Cesium atomic optical wristwatch is entirely self-contained

Oct. 2, 2013
Kapaa, HI--The wristwatch enthusiast's website watchuseek is reporting that Bathys Hawaii, which produces specialist watches for use in extreme environments, has created a wristwatch based on an entirely self-contained cesium atomic optical clock.

Kapaa, HI--The wristwatch enthusiast's website watchuseek is reporting that Bathys Hawaii, which produces specialist watches for use in extreme environments, has created a wristwatch based on an entirely self-contained cesium atomic optical clock. Such clocks use a laser to stimulate a hyperfine transition of ground-state cesium-133.

The watch was created by watchmaker John Patterson and engineer George Talbot, according to watchuseek.

Accurate to 1 s per 1000 years

“The technology found in this watch is something even a decade ago no one could imagine existing in such a small package,” says Patterson. “Within a single chip there is a laser, a heater, a sealed cavity of cesium gas, a microwave filter, and a photodiode detector. Using the exact same principle of counting hyperfine lines of excited cesium-133 atoms used by the National Institute of Standards and Technology (NIST), our watch is able to achieve unprecedented levels of accuracy: on the order of one second per thousand years.”

The new watch is called the “Cesium 133.” As explained on watchuseek, "Unlike so-called 'atomic wrist watches' that use a radio signal generated by the U.S. government to keep accurate time, this new watch has its own self-contained cesium source that generates the time signal independently."

The watch is only a prototype, as is made obvious by its large size of 60 x 50 x 23 mm; Patterson will be working to reduce its size, as well as extend its battery life. The aim is to produce a limited edition of 20 watches in 2014, selling at $12,000 each.

There are other types of atomic optical clocks that beat cesium clocks in accuracy, such as strontium clocks; however, they don't yet fit on the wrist.

Source: http://www.watchuseek.com/news/bam-bathys-hawaii-creates-world-s-most-accurate-wristwatch-the-cesium-133

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!