NASA 3D printed rocket engine component cuts costs 70%

July 15, 2013
Cleveland, OH--NASA's Glenn Research Center and Aerojet Rocketdyne finished testing a rocket engine injector made through laser additive manufacturing (AM) or 3D printing.

Cleveland, OH--NASA's Glenn Research Center and Aerojet Rocketdyne (West Palm Beach, FL) recently finished testing a rocket engine injector made through laser additive manufacturing (http://www.laserfocusworld.com/articles/print/volume-45/issue-6/features/photonics-applied-materials-processing-laser-additive-manufacturing-gains-strength.html) (AM) or 3D printing. This space technology demonstration may lead to more efficient manufacturing of rocket engines, saving American companies time and money.

NASA's Glenn Research Center in Cleveland conducted the successful tests for Aerojet Rocketdyne through a non-reimbursable Space Act Agreement. A series of firings of a liquid oxygen and gaseous hydrogen rocket injector assembly demonstrated the ability to design, manufacture, and test a highly critical rocket engine component using selective laser melting manufacturing technology. Aerojet Rocketdyne designed and fabricated the injector by a method that uses high-powered laser beams to melt and fuse fine metallic powders into three dimensional structures.

"NASA recognizes that on Earth and potentially in space, additive manufacturing can be game-changing for new mission opportunities, significantly reducing production time and cost by 'printing' tools, engine parts or even entire spacecraft," said Michael Gazarik, NASA's associate administrator for space technology in Washington. "3-D manufacturing offers opportunities to optimize the fit, form and delivery systems of materials that will enable our space missions while directly benefiting American businesses here on Earth." This type of injector manufactured with traditional processes would take more than a year to make but with these new processes it can be produced in less than four months, with a 70% reduction in cost.

"Rocket engine components are complex machined pieces that require significant labor and time to produce. The injector is one of the most expensive components of an engine," said Tyler Hickman, who led the testing at Glenn. Aerojet Rocketdyne's additive manufacturing program manager, Jeff Haynes, said the injector represents a significant advancement in application of additive manufacturing, most often used to make simple brackets and other less critical hardware. "The injector is the heart of a rocket engine and represents a large portion of the resulting cost of these systems. Today, we have the results of a fully additive manufactured rocket injector with a demonstration in a relevant environment." he said.

Glenn and Aerojet Rocketdyne partnered on the project with the Air Force Research Laboratory at Edwards Air Force Base, CA. At the Air Force lab, a unique high-pressure facility provided pre-test data early in the program to give insight into the spray patterns of additively manufactured injector elements. "Hot fire testing the injector as part of a rocket engine is a significant accomplishment in maturing additive manufacturing for use in rocket engines," said Carol Tolbert, manager of the Manufacturing Innovation Project at Glenn. "These successful tests let us know that we are ready to move on to demonstrate the feasibility of developing full-size, additively manufactured parts."

SOURCE: NASA; http://www.nasa.gov/press/2013/july/nasa-industry-test-additively-manufactured-rocket-engine-injector-0/

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!