Millimeter-long GaN nanowires grow horizontally

Sept. 6, 2011
Rehovot, Israel--Weizmann Institute professor Ernesto Joselevich has found a way to grow semiconductor nanowires horizontally (not up as is typical) on a surface.

Rehovot, Israel--Weizmann Institute professor Ernesto Joselevich has found a way to grow semiconductor nanowires horizontally (not vertically as is typical) on a surface, enabling for the first time the much-needed guidance to produce relatively long, orderly, aligned structures. Since semiconductors with controlled structures are at the core of the most advanced technologies, these new semiconductor nanostructures should offer enhanced electronic and optical properties useful for a wide range of applications including LEDs, lasers, information storage media, transistors, computers, photovoltaics, and more.

Joselevich and colleagues of the Materials and Interfaces Department grew nanowires made of gallium nitride (GaN) using a method that usually produces vertical nanowires with excellent optical and electronic properties. These vertical wires only become unruly once they are harvested and assembled into arrays. To bypass this problem, the scientists used sapphire as a base on which to grow the nanowires. But rather than growing them on a smooth surface, they deliberately cut the sapphire along different planes of the crystal, resulting in various surface patterns including "steps" of nanometer dimensions between the different planes, as well as accordion-like, V-shaped grooves.

Their results, recently published in Science (http://www.sciencemag.org/content/333/6045/1003.full?sid=93f889c5-0110-4e80-8810-2d518673ff79) show that surface steps and grooves have a strong guiding effect, coaxing the nanowires to grow horizontally along their edges or within the grooves and producing well-aligned, millimeter-long nanowire arrays. In contrast, current methods of assembling nanowires horizontally on smooth surfaces result in disorderly nanowires only micrometers in length with subpar properties.

Although the mechanisms that create the long nanowires are still not well understood, the team has managed the synthesis and assembly of well-structured nanowires with unique properties suitable for a wide range of applications by simply getting them “into the groove.”

SOURCE: Weizmann Institute of Science; http://wis-wander.weizmann.ac.il/nanowires-get-into-the-groove

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!