First diamond laser built using Raman technique portends future high-power laser sources

Dec. 11, 2008
A team of physicists at Macquarie University (Sydney, Australia) has created "the first diamond laser using a technique based on the Raman effect." The achievement demonstrates an effective method for generating powerful laser beams, and shows that chemical vapor deposition (CVD) diamonds are of adequate size and quality to enable exploration of a new class of laser devices.

A team of physicists at Macquarie University (Sydney, Australia) has created what it calls "the first diamond laser using a technique based on the Raman effect." The achievement has demonstrated a new, more effective method for generating a powerful beam, and has shown that chemical vapor deposition (CVD) diamonds are of adequate size and quality to enable exploration of a new class of laser devices.

"This research could pave the way for new laser sources over a wide range of wavelengths and with very high power levels," said research leader Richard Mildren. "Using natural diamonds in this type of work is problematic -- the quality is not consistent and, as everybody knows, they're very expensive," he noted.

He explains that CVD diamond production has improved substantially in the past two to three years, and now, "a one centimetre-long crystal can be purchased for around $2000."

Mildren says, "The next step is to see how effectively CVD diamond lasers operate at even higher power levels. We'd also like to investigate the potential for diamond Raman lasers in the ultraviolet and long wave infrared regions where other materials can't operate."
Mildren said there is potential for diamond Raman lasers to be used in everything from terahertz threat detection such as body-scanning devices at airports; ultra high precision laser surgery; and defense applications including directed energy weapons.

For more information see Macquarie University's website.

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!