Soliton compression in silicon waveguides aimed at on-chip optical communication

Jan. 21, 2014
Sydney, Australia--An international research team has for the first time produced soliton compression in a silicon photonic crystal on-chip.

Sydney, Australia--An international research team has for the first time produced soliton compression in a silicon photonic crystal on-chip.1 The team hails from the University of Sydney; Tecnalia (Zamudio, Spain); Sun Yat-sen University (Guangzhou, China); and the University of York (York, England).

Andrea Blanco-Redondo and Chad Husko from the ARC Centre of Excellence for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) at the University of Sydney's School of Physics led the research.

Slow-light effect
In the ideal case, soliton behavior in silicon waveguides would be similar to that of the well-studied types of solitons in an optical fiber; however, until now, however the composition and properties of silicon waveguides prevented the observation of solitons in silicon photonic crystals.

The researchers were able to compress 3.7 ps pulses of only 10 pJ energy to a 1.6 ps duration; the results were achieved using a dispersion-configured slow-light photonic-crystal waveguide.

In contrast to kilometer-scale fibers, the soliton propagation in the silicon waveguides occurs at the micron scale, due to the slow-light effect. The results could lead to miniaturization of optical components featuring soliton-based functionality in integrated silicon photonic chips.

"Our experiments will inform the ongoing push to develop optical circuits in CMOS-compatible materials such as silicon for on-chip communication, similar to the community's research in glass fiber in the 1980s," says Husko.

REFERENCE:

1. A. Blanco-Redondo et al., Nature Communications 5, 15 January 2014; doi: 10.1038/ncomms4160

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!