Pulsed terahertz quantum-cascade laser has peak power of 1.01 W

Feb. 17, 2014
Leeds, England--A 3.4-THz-emitting quantum-cascade laser (QCL) created by a group at the School of Electronic and Electrical Engineering, University of Leeds, reaches a pulsed peak power of up to 10.01 W from a single facet when cooled to 10 K.

Leeds, England--A 3.4-THz-emitting quantum-cascade laser (QCL) created by a group at the School of Electronic and Electrical Engineering, University of Leeds, reaches a pulsed peak power of up to 1.01 W from a single facet when cooled to 10 K.1 The laser output is achieved using a broad-area configuration.

An aluminum gallium arsenide- based (Al0.16Ga0.84As/GaAs) heterostructure was grown on a semi-insulating GaAs substrate; ridges of widths from 145 to 425 μm were pholithographically created. In the experiment, the lasers were pulsed at 10 kHz and a 2% duty cycle and cooled by liquid helium.

A version with a 3-mm-long cavity and a 425-μm-wide ridge emitted a peak power of 780 mW; when one facet was coated with a high-reflectivity coating, the peak power was boosted to 1.01 W.

This output more than doubles the output levels in terahertz QCLs developed ar the Massachusetts Institute of Technology (MIT; Cambridge, MA) and subsequently by a team from the Vienna University of Technology (Vienna, Austria) last year.

Widely publicized potential applications of terahertz radiation include monitoring pharmaceutical products, remote sensing of chemical signatures of explosives in unopened envelopes, and noninvasive detection of cancers in the human body. “Although it is possible to build large instruments that generate powerful beams of terahertz radiation, these instruments are only useful for a limited set of applications," says Edmund Linfield, one of the University of Leeds researchers. "We need terahertz lasers that not only offer high power but are also portable and low cost."

The quantum cascade terahertz lasers being developed by Leeds are only a few square millimeters in size.

The work was mainly funded by the Engineering and Physical Sciences Research Council (EPSRC; Swindon, England).

REFERENCE:

1. Lianhe Li et al., Electronics Letters (2014); doi: 10.1049/el.2013.4035

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!