Waveguide optical modulator and tunable filter fabricated using standard CMOS techniques

Feb. 19, 2014
Boulder, CO--Silicon-photonics researchers from the University of Colorado Boulder, Massachusetts Institute of Technology (MIT; Cambridge, MA), and the University of California, Berkeley have created a waveguide optical modulator and a waveguide tunable optical filter that not only are as energy-efficient as some of the best previous devices around, say the researchers, but were built using a standard IBM CMOS process.

Boulder, CO--Silicon-photonics researchers from the University of Colorado, Boulder, Massachusetts Institute of Technology (MIT; Cambridge, MA), and the University of California, Berkeley have created a waveguide optical modulator and a waveguide tunable optical filter that not only are as energy-efficient as some of the best previous devices around, say the researchers, but were built using a standard IBM advanced CMOS process.

"As far as we know, we're the first ones to get silicon photonics natively integrated into an advanced CMOS process and to achieve energy efficiencies that are very competitive with electronics," said Mark Wade of the University of Colorado, Boulder, who will present his team’s work at OFC.

Researchers anticipate that integrated photonic computing and data communications will be at least 10 times more energy efficient than electronics. Chip-to-chip communication links using these photonic devices could have at least 10 times higher bandwidth density.

But so far, Wade explains, photonic devices used in chip-to-chip communication have been primarily custom-built using specialized methods, limiting their commercial applicability; pre-existing devices that have been created with more standardized techniques rely on older technology, which limits their ability to compete with cutting-edge electronics.

"IBM’s CMOS process has already been commercially proven to make high-quality microelectronics products," Wade says. The work was part of the U.S. Defense Advanced Research Projects Agency’s (DARPA's) Photonically Optimized Embedded Microprocessors (POEM) project.

Presentation Tu2E.7, titled “Energy-efficient active photonics in a zero-change, state-of-the-art CMOS process,” will take place Tuesday, March 11 at 3:30 p.m. in room 123 of the Moscone Center.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!