Using laser pulses, Munich physicists create energetic carbon beams

Dec. 10, 2009
Oncologists have a dream: they want to use highly energetic ion beams in accurately defined doses for a effective radiation treatment of tumors.

Oncologists have a dream: they want to use highly energetic ion beams in accurately defined doses for a effective radiation treatment of tumors. Modern techniques based on intense laser pulses may play an important role in the future and replace expensive conventional particle accelerators.

Carbon beams are considered to be a very effective method of cancer therapy, as tumors are destroyed permanently with minimum trauma. Whereas conventional x-rays or electron beams cause significant damage to the surrounding healthy tissue on their pathway into the body, the high biological effectiveness of carbon beams can be precisely concentrated in the tumor, thus exclusively killing targeted cancer cells. Therefore, carbon ions are an outstanding tool for radiation therapy of deeply situated tumors located in highly sensitive regions like in the vicinity of the brain stem, where doctors would refuse to even contemplate surgical intervention.

Now, a team of physicists of the Cluster of Excellence Munich-Centre for Advanced Photonics (MAP) led by Dietrich Habs (Ludwig-Maximilian University Munich) in cooperation with scientists of the Max-Born-Institute in Berlin have experimentally demonstrated a mechanism of laser-driven carbon-ion-beam generation that was predicted by theorists long ago.1 

Ions from diomondlike carbon
The scientists generate the high-energy ions by irradiating diamondlike carbon foils with intense laser pulses. Atoms located within the foil are split into electrons and ions by the strong electric field of the laser focus, generating a plasma. The high laser intensity (about 1020 times more intense than the sun) strongly heats the electrons and separates them in an expanding cloud from the heavier and therefore slower ions. A huge charge-separation field builds up, accelerating ions to velocities up to a tenth of light speed.

Previously, laser-accelerated ions exhibited a broad energy spectrum, whereas medical applications demand a well-defined particle energy to allow for a precise control of penetration depth and dose distribution in the body.

The group of Munich physicists is the first to experimentally demonstrate an acceleration process that gives all ions the same velocity. By changing the laser polarization from linear to circular and reducing the diamondlike carbon foil to only a few nanometers in thickness, uncontrolled heating of the particles and subsequent foil expansion was avoided. Instead, the laser light pushes the electrons collectively as a nanometer-thin layer in the forward direction, dragging carbon ions with it. The whole foil is driven like a sail by the light pressure of the laser.

The next challenge for the physicists is to further increase the energy of the laser-accelerated ion beam. At the moment it is not yet energetic enough to penetrate the human body far enough to reach deeply situated tumors.


REFERENCE:

1. DOI: 10.1103/PhysRevLett.103.245003

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!