VUV-free electron laser completes first measuring period

March 22, 2006
March 22, 2006, Hamburg, Germany--The first measuring period for external users at the new X-ray radiation source VUV-FEL at DESY in Hamburg has been successfully concluded. Since its official startup in August 2005, a total of 14 research teams from ten countries have carried out first experiments using the facility's intense laser beam.

March 22, 2006, Hamburg, Germany--The first measuring period for external users at the new X-ray radiation source VUV-FEL at DESY in Hamburg has been successfully concluded. Since its official startup in August 2005, a total of 14 research teams from ten countries have carried out first experiments using the facility's intense laser beam.

"Both the external researchers and the DESY team gained most valuable experience with the new machine," DESY research director Professor Jochen Schneider said. "As a worldwide unique pioneering facility for free-electron lasers for the generation of X-ray radiation, the VUV-FEL for example offers completely new possibilities to trace various processes on extremely short time scales. The currently made first studies verify that these X-ray sources of the future will open another fascinating window for research."

The free-electron laser VUV-FEL is the worldwide first and until 2009 the only source of intense laser radiation in the ultraviolet and the soft X-ray range. The 300-meter-long facility at DESY generated laser flashes with a wavelength of 32 nanometers (billionths of a meter) for the first time in January 2005 – this is the shortest wavelength ever achieved with a free-electron laser. Since its official startup as a user facility in August 2005, the VUV-FEL has been at the disposal of research groups from all over the world for experiments in areas such as cluster physics, solid state physics, plasma research and biology. Four experimental stations are currently available, at which different instruments can be operated alternately.

"The VUV-FEL is an absolute novelty: For the first time, experiments with intense, pulsed laser radiation can now be carried out at these short wavelengths," said DESY physicist Josef Feldhaus, who is in charge of the coordination of the experiments at the VUV-FEL. "The researchers are thus venturing into completely uncharted terrain, of which nobody has any experience yet."

Sponsored Recommendations

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Advanced Spectral Accuracy: Excitation Filters

Sept. 5, 2024
Enhance your fluorescence experiments with our Excitation Filters. These filters offer superior transmission and spectral accuracy, making them ideal for exciting specific fluorophores...

Raman Filter Sets for Accurate Spectral Data

Sept. 5, 2024
Enhance your Raman spectroscopy with our specialized Raman Filter Sets. Designed for high precision, these filters enable clear separation of Raman signals from laser excitation...

Precision-Engineered Longpass Filters

Sept. 5, 2024
Discover our precision-engineered Longpass Filters, designed for high transmission and optimal wavelength separation. Perfect for fluorescence imaging, microscopy, and more.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!