Terahertz waves travel slower along smaller wires

April 27, 2006
April 27, 2006, Houston, TX--Frequently, the unexpected results in science are the most exciting. That's the case with the latest findings from the lab of Rice University's electrical engineer Daniel Mittleman, who was trying to find new ways to use terahertz energy, or T-rays, for chemical sensing when he noticed a strange tendency of the signals to travel slower if they were sent down smaller metal wires.

April 27, 2006, Houston, TX--Frequently, the unexpected results in science are the most exciting. That's the case with the latest findings from the lab of Rice University's electrical engineer Daniel Mittleman, who was trying to find new ways to use terahertz energy, or T-rays, for chemical sensing when he noticed a strange tendency of the signals to travel slower if they were sent down smaller metal wires.

Mittleman and graduate student Kanglin Wang reported their findings in the April 21 issue of Physical Review Letters. Their explanation for the odd phenomenon arises from the unique way that T-rays interact with the sea of electrons flowing across the surface of the metal wire.

"A similar variation in wave velocity is well-documented for higher frequency radiation in the visible portion of the spectrum, but this was a real puzzle because no one had predicted it for such low frequencies," said Mittleman, associate professor of electrical and computer engineering.

Mittleman and Wang discovered that the phenomenon during follow-up experiments to last year's development of T-ray wire waveguides. Their discovery that T-rays propogate down bare metal wires has allowed them to make T-ray endoscopes that can carry T-rays around corners and into tight places ­ like pipes and metal containers,­ where it hasn't been feasible to place a T-ray generator. Mittleman hopes to use the technique to design a new class of chemical sensors that port security officers can use to quickly determine whether explosives are hidden inside shipping containers.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!