NIF achieves symmetric capsule implosion

March 1, 2010
Researchers have begun using the 192 laser beams of the National Ignition Facility at Lawrence Livermore National Laboratory to implode spherical fusion capsules.

Researchers have begun using the 192 laser beams of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL; Livermore, CA) to implode spherical fusion capsules. These capsules will eventually contain small amounts of deuterium and tritium that will act as the ignition source for sustained fusion. In preparation for that goal (experiments with deuterium/tritium fuel will begin in summer 2010), the researchers must first demonstrate that implosions are symmetrical in nature, meaning that the energy on the capsule's surface is optimized for fusion burn.

After several attempts over the last few months that produced elliptical implosion signatures, the NIF scientists announced that they had just symmetrically imploded 1.8 mm helium/deuterium-filled capsules at 20 Kelvin (K) that demonstrated efficient hohlraum heating to radiation temperatures of 3.3 million K. The x-ray emission images at 9 keV at a peak emission time of 18 ± 0.15 ns show shape changes from elliptical to circular based on varying the laser-wavelength difference for beams that strike the radiation enclosure (hohlraum) closer to the axis of its cylinder (the inner beams) and further from its axis (the outer beams). A nominal separation of 1.7 Å yields the most symmetrical result. Contact Siegfried H. Glenzer at [email protected].

More Laser Focus World Current Issue Articles
More Laser Focus World Archives Issue Articles

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!