Wet oxidation creates waveguides compatible with CMOS electronics

April 1, 2010
Practical CMOS-compatible silicon photonics will radically boost the capabilities of computer chips–at least if a practical way is developed to fabricate the optics and electronics together.

Practical CMOS-compatible silicon photonics will radically boost the capabilities of computer chips–at least if a practical way is developed to fabricate the optics and electronics together. One problem is that the layer of silica (SiO2) between a silicon (Si) waveguide and the Si wafer needs to be many times the thickness of the SiO2 between a transistor and the wafer; this incompatibility makes integration of optics on the transistor layer very difficult. But researchers at Cornell University (Ithaca, NY) have come up with a way of locally creating a thick layer of SiO2 only in the region below waveguides, using a real CMOS-compatible wafer and process.

A layer of silicon nitride (Si3N4) is deposited and etched through to the Si to create the waveguide geometry; Si3N4 is deposited and etched again to create a tall waveguide covered on three sides by Si3N4. Next, using wet oxidation, a layer of SiO2 is grown everywhere except on the Si3N4; the result is an SiO2 layer that grows until it meets under the waveguide, creating the desired nice, thick (3 µm) buffer layer while allowing transistors elsewhere to have their thin (40 nm) buffer layers. (A final upper SiO2 is grown over the waveguide to complete the optical buffer.) The first experimental waveguide showed a loss of 2.92 dB/cm–which, when optimized, could be reduced to 0.001 dB/cm. Contact Nicolás Sherwood-Droz at[email protected].

More Laser Focus World Current Issue Articles
More Laser Focus World Archives Issue Articles

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!