Researchers use semiconductors to set speed limit on light

Sept. 29, 2004
Berkeley, CA, September 29, 2004--In a nod to scientific paradox, researchers at the University of California, Berkeley, have slowed light down in an effort to speed up network communication.

Berkeley, CA, September 29, 2004--In a nod to scientific paradox, researchers at the University of California, Berkeley, have slowed light down in an effort to speed up network communication.

They have shown for the first time that the group velocity of light - the speed at which a laser pulse travels along a light wave - can be slowed to about 6 miles per second in semiconductors. While that speed is not exactly the pace of a turtle, it is 31,000 times slower than the 186,000 miles (or 300 million meters) per second that light normally clocks while traveling through a vacuum.

"It's about twice as fast as an orbiting space shuttle," said Connie J. Chang-Hasnain, UC Berkeley professor of electrical engineering and computer science and principal investigator of the project. "This achievement marks a major milestone on the road to ever faster optical networks and higher performance communications."

The researchers envision a future of 3-D graphics transmission, high-resolution video conferencing as good as face-to-face encounters and quantum memory chips that could boost the power of supercomputers, including those used for complex climate modeling.

Chang-Hasnain and other researchers at UC Berkeley's Department of Electrical Engineering and Computer Sciences describe their experiment in a paper published Oct. 1 in the journal Optics Letters. Co-authors of the paper include Hailin Wang at the University of Oregon (Eugene, OR) and Shun-Lien Chuang at the University of Illinois at Urbana-Champaign.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!