Cavity ring-down measures AR and HR laser coatings to sub-ppm precision

April 10, 2017
Researchers have come up with a different approach for measuring laser optics parameters using a two-channel cavity ring-down setup for measurement.

The Laser Interferometer Gravitational-Wave Observatory (LIGO), laser gyroscopes, and certain forms of laser spectroscopy all share the need for laser optics with very highly reflective (HR) or antireflective (AR) coatings. However, measuring the transmission and reflectance of such coatings is done using traditional spectrophotometry or laser ratiometric techniques, which have difficulty measuring residual transmittance of HR coatings or residual reflectance of AR coatings to better than 0.01%, or 100 parts per million (ppm)—when sub-ppm accuracy is sometimes needed. Researchers at the University of Electronic Science and Technology of China and the Chinese Academy of Sciences (both in Chengdu, China) have come up with a different approach for measuring reflection (R), transmission (T), and optical loss (L) parameters of high-performance laser optics using a two-channel cavity ring-down (CRD) setup for measurement. The setup allows for mapping as well as single-point measurement of either reflection or transmission (L is determined by subtracting T and R from 1).

For measurement, the optic to be tested is placed in one of the two channels. Two ring-down measurements, one in each channel, are recorded at the same time (any DC offsets of the photodetectors are eliminated by fitting the ring-down signals to an exponential function). For an HR mirror with a 4 ppm transmittance, the measured R, T, and L at a single point were 99.99821 ± 0.00004%, 4.042 ±0.008 ppm, and 13.9 ±0.4 ppm, respectively. For an AR sample, the measured T, R, and L at a single point were 99.99279 ±0.00004%, 50.0 ±0.7 ppm, and 22.0 ±0.4 ppm. The low standard deviations for the measurements show the high accuracy of the technique. Reference: H. Cui et al., Opt. Express (2017); https://doi.org/10.1364/OE.25.005807.

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!