LIGO interferometric instruments directly detect cosmic gravitational waves for the first time

Feb. 11, 2016
Interferometer signals at both detectors show an upward sweep in frequency from 35 to 250 Hz.

After years of measurements, refinements, and waiting by scientists, the twin Laser Interferometer Gravitational-wave Observatory (LIGO) detectors, located in Livingston, Louisiana, and Hanford, Washington, have for the first time directly detected gravitational waves, which are ripples in the fabric of spacetime.1 This confirms a major prediction of Albert Einstein’s 1915 general theory of relativity and opens a new window onto the cosmos.

Measured frequency sweep from 35 to 250 Hz

The gravitational waves were detected on September 14, 2015 at 5:51 a.m. Eastern Daylight Time (09:51 UTC) by both of the LIGO detectors. The signals at both detectors show an upward sweep in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 x 10-21. The waveform matches what is predicted by general relativity for the merger of two black holes and the subsequent ringdown.

Based on the observed signals, LIGO scientists estimate that the black holes for this event were about 29 and 36 times the mass of the sun, and the event took place 1.3 billion years ago. About 3 times the mass of the sun was converted into gravitational waves in a fraction of a second, with a peak power output about 50 times that of the whole visible universe. By looking at the time of arrival of the signalsthe detector in Livingston recorded the event 7 ms before the detector in Hanfordscientists can say that the source was located in the Southern Hemisphere.

The discovery was made possible by the enhanced capabilities of Advanced LIGO, a major upgrade that increases the sensitivity of the instruments compared to the first generation LIGO detectors, enabling a large increase in the volume of the universe probedand the discovery of gravitational waves during its first observation run. The development and refinement of LIGO has pushed the boundaries of interferometric measurement, optical, and laser technology.

(Video: Caltech)

The LIGO Observatories are funded by the National Science Foundation (NSF), and were conceived, built, and are operated by Caltech and MIT. The discovery was made by the LIGO Scientific Collaboration (which includes the GEO Collaboration and the Australian Consortium for Interferometric Gravitational Astronomy) and the Virgo Collaboration using data from the two LIGO detectors.

LIGO research is carried out by the LIGO Scientific Collaboration (LSC), a group of more than 1000 scientists from universities around the United States and in 14 other countries.

More detectors will help locate gravitational-wave sources

"Hopefully this first observation will accelerate the construction of a global network of detectors to enable accurate source location in the era of multi-messenger astronomy," says David McClelland, professor of physics and director of the Centre for Gravitational Physics at the Australian National University.

Source: https://mediaassets.caltech.edu/gwave

Reference:

B. P. Abbott et al., Physical Review Letters (2016); http://link.aps.org/doi/10.1103/PhysRevLett.116.061102

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!