Polish researchers use McPherson spectrometer for VUV-phosphor lighting research

June 22, 2011
To develop vacuum-ultraviolet (VUV)-excitable phosphors, researchers at the Institute of Low Temperature and Structure, Polish Academy of Science have contracted McPherson Instruments (Chelmsford, MA) to build a characterization system for the 120 to 1800 nm range.

Wroclaw, Poland--To develop vacuum-ultraviolet (VUV)-excitable phosphors, researchers at the Institute of Low Temperature and Structure, Polish Academy of Sciences have contracted McPherson Instruments (Chelmsford, MA) to build a characterization system for the 120 to 1800 nm range. In the system, the benign discharge of a noble gas will replace mercury excitation to produce phosphor emission under environmentally acceptable conditions.

Led by Przemyslaw Deren, the group plans to use the McPherson system to measure and characterize luminescence properties of phosphors and crystals. The research is intended to help create more efficient methods of commercial lighting. There is still work to be done in order to realize viable, efficient VUV-excited phosphors. Such phosphors will solve two important problems: ecological and efficiency. Today’s compact fluorescent lamps (CFLs) rely on mercury, which is harmful to humans and nature. The new VUV phosphors are instead excited by environmentally benign discharge in noble gases. In addition, the VUV phosphors should produce light at twice the energy efficiency as today’s CFLs.

The spectrometer system from McPherson will be used to study quantum cutting phenomena and eventually to obtain a new class of lighting fixtures. The instrument enables research efforts by allowing tunable, monochromatic VUV-wavelength sample excitation and subsequent emission measurements from the VUV to the near infrared at a much lower cost than relying on synchrotron storage rings for VUV radiation.

For more info, see www.McPhersonInc.com.

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it’s free!

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Explore the essential role of optical filters in enhancing Raman spectroscopy measurements including the various filter types and their applications in improving signal-to-noise...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!