Attosecond laser science points the way to petahertz optoelectronics

March 12, 2018
Electronics and optoelectronics that operate at the 10-18 s timescale are the desire, attosecond spectroscopy the learning tool.

Physicists at ETH Zürich have for the first time resolved the response of electrons in gallium arsenide at the attosecond (10-18 s) timescale -- gaining unexpected insights for future ultrafast optoelectronic devices with operation frequencies in the petahertz regime.

Which dominates -- interband or intraband?

Gallium arsenide is a technologically important narrow-band-gap semiconductor, in which the excitation of electrons from the valence into the conduction band produces charge carriers that can transport electrical current through electronics components. In addition to this so-called interband transition, carriers can also be accelerated within the individual bands as the electrons interact with the laser light. This is due to the strong electric field associated with the laser light, leading to intraband motion. Which of the two mechanisms dominates the response to a short intense laser pulse, and how their interplay effects the carrier injection into the conduction band, is far from obvious.

Fabian Schlaepfer and his colleagues in Ursula Keller's group at the Institute for Quantum Electronics have studied these processes for the first time at the attosecond timescale, combining transient absorption spectroscopy with state-of-the-art first-principles calculations. They found that intraband motion has indeed an important role, as it significantly enhances the number of electrons that get excited into the conduction band.1

This finding was unexpected because intraband motion alone is unable to produce charge carriers in the conduction band. These results therefore represent an important step forward in understanding the light-induced electron dynamics in a semiconductor on the attosecond timescale, which will be of practical relevance for future electronics and optoelectronics devices, whose dimensions become ever smaller, and the electric fields involved ever stronger and the dynamics ever faster.

Source: https://www.phys.ethz.ch/news-and-events/d-phys-news/2018/03/a-milestone-in-petahertz-electronics.html

REFERENCE:
1. Schlaepfer F. et al., Nature Physics (2018); doi: 10.1038/s41567-018-0069-0

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!