Ultrafast laser method opens holes in cells to study mitochondrial DNA diseases

May 20, 2016
An ultrafast laser-driven method could help point to pathways to develop treatments for mitochondrial DNA diseases.

Researchers at the University of California Los Angeles (UCLA) have demonstrated a new ultrafast laser-driven method to conduct research on mitochondrial DNA diseases—a broad group of debilitating genetic disorders that can affect the brain, heart, and muscles. The method, which employs a technology developed by the research team, opens holes in the cell membrane and could pave the way for specific research on how and why these diseases occur, as well as point to pathways to develop treatments.

Related: Biophotonic tool can deliver large particles into 100,000 cells per minute

Mitochondria, small organelles that reside inside a cell's cytoplasm but outside the nucleus, convert food into energy and building blocks for cells in a process known as metabolism. Mutations in mitochondrial DNA (mtDNA), can cause devastating diseases that mainly affect tissues and cells with high-energy demands. One of the best-known mtDNA diseases is Leber's hereditary optic neuropathy, which can cause sudden and profound loss of central vision. Because mitochondria in humans are maternally inherited, mtDNA diseases can be passed from an unaffected mother to her children.

According to the researchers, mitochondria with healthy mtDNA could be delivered into cells with damaged mtDNA, which could dramatically reduce a disease's effects, or possibly eliminate it.

The process of transferring mitochondria between cells using the nanoblade technology. (Image credit: Alexander Patananan)

To begin to address these and other complex issues surrounding mtDNA alterations, the researchers—led by Dr. Michael Teitell, director of basic and translational research in the Jonsson Comprehensive Cancer Center at UCLA and the study's co-lead author, and Pei-Yu (Eric) Chiou, professor of mechanical and aerospace engineering at the UCLA Henry Samueli School of Engineering and Applied Science—collaborated on a new precision cutting tool. The tool, a "photothermal nanoblade," uses an ultrafast laser-induced cavitation bubble to open holes in the outer membrane of a cell. This enables pressurized delivery of desired contents—in this case, healthy mitochondria—into the cell cytoplasm. Chiou explains that their process keeps cells alive, as the nanoblade tool never enters the cell. "So, we can achieve a very high efficiency in the delivery of large-sized, slow-diffusing cargo, such as mitochondria," he says.

Osteosarcoma cells and mitochondria (green), with additional mitochondria (red) transferred via the nanoblade. (Image credit: Ting-Hsiang Wu)

Additionally, Chiou and Teitell are engineering an approach that incorporates the nanoblade into a high-throughput system that could deliver desired cargo, such as mitochondria, into as many as 100,000 cells per minute.

Full details of the work appear in the journal Cell Metabolism; for more information, please visit http://dx.doi.org/10.1016/j.cmet.2016.04.007.

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!