Ultrafast lasers ‘go small’ for future satellite PNT systems

June 16, 2022
By bonding cavity components directly onto an aluminum baseplate, researchers move closer toward their goal of building a small, space-qualified Kerr-lens modelocked laser.

Ultrafast lasers must become smaller and more robust to be adopted in next-generation positioning, navigation, and timing (PNT) systems used in space. These systems previously occupied a full optical bench, but Hanna Ostapenko, a researcher at Heriot-Watt University’s Institute of Photonics and Quantum Sciences in Scotland, and colleagues saw an opportunity to use a modern bonding bench to reduce the entire femtosecond laser to a palm-sized format.

During CLEO 2022, Ostapenko presented her work to shrink the footprint of ultrafast lasers so they can one day become small enough to be incorporated into PNT systems flown on satellites orbiting the Earth.

The group built 1.5- and 2.185-GHz Kerr-lens modelocked ytterbium-doped yttria (Yb:Y2O3) ring lasers to produce femtosecond pulses directly from the cavity, and conventional, albeit small, components commonly found in most lasers: lenses, mirrors, and a gain crystal.

Their innovation is a special bonding approach—inspired by techniques already proven for aerospace applications by their industrial partner Airbus Defense and Space GmbH—to align and fix these components with respect to each other in a way that eliminates the need for optomechanics while ensuring robust, self-starting femtosecond-pulse generation.

“The coolest aspect of this work is its robustness,” says Ostapenko. “Conventional solid-state lasers are rather static—you put them in a big sealed box with lots of other scientific mounts and try not to shake it too hard in case the optomechanical mounts are disturbed. All of our laser’s mirrors are glued to a single baseplate and move with it, which means all the components shake in the same way if you throw the laser around. This solid block means that laser operation doesn’t change no matter what you do with it, which we think could make it attractive as a platform for use in space.”

Further work is needed before this laser will be appropriate for deployment on a satellite, and “the baseplate is an area we need to think about carefully,” Ostapenko says. “An all-silica design is likely to be preferred, but may present some challenges for the thermal management of heat generated within the gain crystals.”

For now, the immediate next step for Ostapenko and colleagues is to amplify the laser’s output power in a compact way, so that the entire system remains solid-state and robust. “Our eventual goal is to demonstrate a full optical frequency comb configuration suitable for atomically referenced timing and navigation applications,” she says.

RELATED READING

Y. Feng et al, Opt. Lett., 46, 21, 54295432 (2021); https://doi.org/10.1364/ol.439965.

About the Author

Sally Cole Johnson | Editor in Chief

Sally Cole Johnson, Laser Focus World’s editor in chief, is a science and technology journalist who specializes in physics and semiconductors. She wrote for the American Institute of Physics for more than 15 years, complexity for the Santa Fe Institute, and theoretical physics and neuroscience for the Kavli Foundation.

Sponsored Recommendations

Electroplating 3D Printed Parts

Jan. 24, 2025
In this blog post, you'll learn about plating methods to enhance the engineering performance of resin micro 3D printed parts.

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!