Laser levitation and an optical trap enables nuclear recoil spectroscopy

Feb. 1, 2019
As particles containing nuclear material decay, the physical recoil motion can be quantified and related to kinetic energy, which uniquely identifies the type of material present.

Recognizing the difficulty in measuring smaller nuclear particles using traditional alpha and gamma spectroscopy, scintillation counting, and cloud-chamber detection, researchers at Los Alamos National Laboratory (LANL; Los Alamos, NM) have developed an alternative measurement method using laser levitation of nuclear particles in an optical trap. Small particle analysis can identify the nuclear isotopes within a sample, which is critical to environmental monitoring and in nuclear forensics of manufacturing facilities.

The LANL method determines the isotopic ratios and type of nuclear material by measuring the magnitude and frequency of the recoil (and associated kinetic energy) of a small optically trapped particle as its nuclear material decays. In the decay process for a plutonium oxide (238PuO2) particle (d = 10 nm to 10 µm), for example, a solid particle of diameter d containing nuclear material will decay and emit a daughter atom and radiation that is carried by gamma (γ) photons or by alpha (α) and beta (β) particles. If placed in an optical trap consisting of a 638 nm, 100 mW laser focused to a waist of a few microns, the recoil displacement is measured by position-sensitive photodiodes in real time. The measured displacements can then be used to calculate the kinetic energy of the emitted particles, which is characteristic of the radioactive isotope contained in the trapped sample. Essentially, this unique decay energy can determine the composition of starting nuclear material in the particle. Reference: A. Malyzhenkov et al., Phys. Rev. A, 98, 052103 (2018).

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!