Terahertz spectroscopy plus analysis distinguishes gasoline mixtures

Nov. 5, 2013
It is important in the petroleum industry to be able to characterize different refined-oil mixtures, which include diesel/gasoline and gasoline/gasoline (different octane grades).

More Laser Articles

Terahertz spectroscopy plus analysis distinguishes gasoline mixtures

Top Photonics News: Oil and gas and photonics

Laser spectroscopy measures motor oil consumption

It is important in the petroleum industry to be able to characterize different refined-oil mixtures, which include diesel/gasoline and gasoline/gasoline (different octane grades); one way to do this is with terahertz time-domain spectroscopy, which takes advantage of the fact that different kinds of oil have different terahertz-frequency characteristics. However, in some instances, this approach has not been precise enough: for example, when testing mixtures of 90# and 97# gasoline, the absolute error between the real and fitted value was too large (25%). Now, researchers at Tianjin University (Tianjin, China) and North Automatic Control Technology Institute (Taiyuan, China) have improved this approach by subjecting it to a multiparameter combined analysis, which reduced the absolute error in the example case to 6%.

Terahertz time-domain waveforms of the samples were acquired using a mode-locked Ti:sapphire ultrafast laser to generate electron-hole pairs that created single-cycle terahertz pulses, which were then focused by parabolic optics to a 3.5 mm spot. Changing the relative time delay between a gated pulse and the detected pulse allowed the pulse shape to be mapped out. Absorption-
coefficient spectra of the sample (which was placed in a quartz cell) were taken. The analysis was based on four parameters, two time-related and the other two absorption-related. Eleven gasoline-mixture samples were tested. The researchers believe most types of oil mixtures can be tested this way. Contact Jian Li at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!