New mathematical description of polarization could lead to higher fiber-optic data rates

Aug. 22, 2011
New York, NY--A new way to describe polarized light makes it easier to work with, and potentially exploit, higher-order modes in data-transmitting optical fibers.

New York, NY--A new way to describe polarized light makes it easier to work with, and potentially exploit, higher-order modes in data-transmitting optical fibers.1 Developed at the City College of New York (CCNY) and the Institute of Ultrafast Spectroscopy, the method expands on the use of the century-old concept of the Poincaré sphere for depicting polarization. The new mathematical approach is called a higher order Poincaré sphere (HOPS).

Taking orbital angular momentum into account

Light uniformly polarized across a beam can carry angular momentum through elliptical or circular polarization (see figure). But polarization can be spatially varied across a beam to add a different form of angular momentum (orbital angular momentum) that can be useful, for example, in optical tweezers.

In addition, in fiber-optic communications, some of these higher-order forms of polarizations could, in the future, be used to carry a higher rate of information down an optical fiber. “People now can detect (light in) the ground channel, but this gives way to detect and measure a higher number of channels,” says Giovanni Milione, one of the researchers. With such heavy traffic funneled through a single channel there is great interest in exploiting the others that can be occupied by complex forms of light, he explains.

The CCNY researchers' description of polarization, which includes orbital angular momentum, uses the HOPS to reduce what could be pages of mathematics to single equations--essential for adoption by technology. “The sphere facilitates understanding, showing phase vortices are on poles and vector beams are on the equator,” explains Milione. “It organizes the relationship between these vortices of light.”

Milione will present the team's work at the Optical Society’s "Frontiers in Optics 2011" conference (October 16-20, 2011; San Jose, CA).

REFERENCE:

1. G. Milione et al., Physical Review Letters 107, 053601 (2011).

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!