Non-invasive RS-OCT instrument screens for skin cancer

Dec. 5, 2011
Belfast, Northern Ireland--A joint U.S.-Dutch team is using an Andor near-IR-enhanced Newton camera as part of a Raman Spectroscopy-OCT probe to screen for skin cancer.

Belfast, Northern Ireland--An Andor near-infrared-enhanced Newton camera was chosen as the core element of a Raman diagnosis module that is part of a portable instrument that combines a Raman spectroscopy (RS) system with an optical coherence tomography (OCT) device to enable sequential acquisition of co-registered OCT and RS data sets. The RS-OCT probe was developed by a joint U.S.-Dutch team under the leadership of Anita Mahadevan-Jansen of Vanderbilt University (Nashville, TN) specifically to perform non-invasive morphological and biochemical characterization of skin cancers.

The most common form of human cancer, skin cancer rates continue to climb from their current estimate of more than three million new cases each year. Although skin cancer can be successfully treated with an early diagnosis and complete resection, the non-optical processes today are invasive, subjective, lengthy, and expensive--requiring expert visual inspection, biopsy, and histopathology.

The RS-OCT probe can screen large areas of skin up to 15 mm wide to a depth of 2.4 mm with OCT to visualize microstructural irregularities and perform an initial morphological analysis of lesions. The OCT images are then used to identify locations to acquire biochemically specific Raman spectra.

"Due to the inherently weak nature of Raman scattering and the relatively intense background autofluorescence from tissue, collection efficiency is a critical factor in the design of clinical RS probes," says Chetan A. Patil of Vanderbilt University. "Unlike confocal approaches that emphasize axial resolution, our probe is designed to prioritize collection efficiency. The high sensitivity of the Andor Newton CCD’s back-illuminated, deep-depletion, thermo-electrically cooled design is well suited to the stringent demands of in vivo Raman spectroscopy. The Labview software development kit, which is supplied with the camera and supported directly by Andor, was crucial in the development of our first probe and in our on-going research," adds Patil.

SOURCE: Andor; www.netdyalog.com/news/at/pr11/001.asp?649973-056768-826731-292158

IMAGE: An OCT image (upper) shows a set of hypo-reflective regions in the dermis beneath the red arrow that probably correspond to cancerous tumor cell nests based on the pathology. The tumor cells are also shown in a representative histology (middle; 10x magnification, scale bar = 150 μm). The mean Raman spectra exhibit distinct differences between the cancerous and normal cells in the regions centered at 1090, 1300, and 1440 cm-1. (Courtesy Andor Technology)

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!