Dual-laser standoff sensing provides strong return signal

March 25, 2012
Oak Ridge, TN--A new dual-laser standoff-detection technique allows for the rapid identification of chemicals and biological agents from a distance, say the engineers at the Department of Energy's Oak Ridge National Laboratory (ORNL) who invented the system.

Oak Ridge, TN--A new dual-laser standoff-detection technique allows for the rapid identification of chemicals and biological agents from a distance, say the engineers at the Department of Energy's Oak Ridge National Laboratory (ORNL) who invented the system.1

Ali Passian of ORNL and his colleagues present a technique that uses a quantum-cascade laser to pump a target and a helium-neon laser to monitor the material's response as a result of photothermal changes. "The novel aspect to our approach is that the second laser extracts information and allows us to do this without resorting to a weak return signal," says Passian. "The use of a second laser provides a robust and stable readout approach independent of the pump-laser settings."

While this approach is similar to radar and lidar sensing techniques in that it uses a return signal to carry information of the molecules to be detected, it differs in a number of ways.

"First is the use of a photothermal spectroscopy configuration where the pump and probe beams are nearly parallel," Passian says. "We use probe-beam reflectometry as the return signal in standoff applications, thereby minimizing the need for wavelength-dependent expensive infrared components such as cameras, telescopes, and detectors."

Could lead to hyperspectral imaging

This work represents a proof of principle success that Passian and co-author Rubye Farahi said could lead to advances in standoff detectors with potential applications in quality control, forensics, airport security, medicine and the military. In their paper, the researchers also noted that measurements obtained using their technique may set the stage for hyperspectral imaging.

"This would allow us to effectively take slices of chemical images and gain resolution down to individual pixels," said Passian, who added that this observation is based on cell-by-cell measurements obtained with their variation of photothermal spectroscopy.

REFERENCE:

R. H. Farahi et al., J. Phys. D: Appl. Phys. 45, p. 125101 (2012).

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Electroplating 3D Printed Parts

Jan. 24, 2025
In this blog post, you'll learn about plating methods to enhance the engineering performance of resin micro 3D printed parts.

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!