Dual-laser standoff sensing provides strong return signal

March 25, 2012
Oak Ridge, TN--A new dual-laser standoff-detection technique allows for the rapid identification of chemicals and biological agents from a distance, say the engineers at the Department of Energy's Oak Ridge National Laboratory (ORNL) who invented the system.

Oak Ridge, TN--A new dual-laser standoff-detection technique allows for the rapid identification of chemicals and biological agents from a distance, say the engineers at the Department of Energy's Oak Ridge National Laboratory (ORNL) who invented the system.1

Ali Passian of ORNL and his colleagues present a technique that uses a quantum-cascade laser to pump a target and a helium-neon laser to monitor the material's response as a result of photothermal changes. "The novel aspect to our approach is that the second laser extracts information and allows us to do this without resorting to a weak return signal," says Passian. "The use of a second laser provides a robust and stable readout approach independent of the pump-laser settings."

While this approach is similar to radar and lidar sensing techniques in that it uses a return signal to carry information of the molecules to be detected, it differs in a number of ways.

"First is the use of a photothermal spectroscopy configuration where the pump and probe beams are nearly parallel," Passian says. "We use probe-beam reflectometry as the return signal in standoff applications, thereby minimizing the need for wavelength-dependent expensive infrared components such as cameras, telescopes, and detectors."

Could lead to hyperspectral imaging

This work represents a proof of principle success that Passian and co-author Rubye Farahi said could lead to advances in standoff detectors with potential applications in quality control, forensics, airport security, medicine and the military. In their paper, the researchers also noted that measurements obtained using their technique may set the stage for hyperspectral imaging.

"This would allow us to effectively take slices of chemical images and gain resolution down to individual pixels," said Passian, who added that this observation is based on cell-by-cell measurements obtained with their variation of photothermal spectroscopy.

REFERENCE:

R. H. Farahi et al., J. Phys. D: Appl. Phys. 45, p. 125101 (2012).

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!