Edinburgh Instruments picosecond pulsed diode laser for time-correlated single-photon counting

March 19, 2012
The EPL 515 picosecond pulsed diode laser emits at a nominal 512 nm wavelength and is optimized for time-correlated single-photon counting (TCSPC).
3 Lfw 23 Edinburgh 5fbe7add0092c

The EPL 515 picosecond pulsed diode laser emits at a nominal 512 nm wavelength and is optimized for time-correlated single-photon counting (TCSPC). It is pre-adjusted for an optimum pulse width of 150 ps at 10 MHz, and features 10 preset repetition frequencies from 20 KHz to 20 MHz.
Edinburgh Instruments
Livingston, England

[email protected]

More Products

-----

PRESS RELEASE

New 515 nm Picosecond Pulsed Diode Laser From Edinburgh Instruments

Edinburgh Instruments, Photonics Division, Livingston, UK, 24 November 2011; The Photonics Division of Edinburgh Instruments, has announced the availability of the EPL 515 picosecond pulsed diode laser. Emitting at a nominal 512 nm wavelength, this is the latest addition to the comprehensive range of EPL diode lasers which are optimised for Time Correlated Single Photon Counting (TCSPC).

The EPL 515 is a compact, robust, maintenance free, fully integrated system. It is pre-adjusted for an optimum pulse width of 150 ps at 10 Mhz, and features 10 pre-set repetition frequencies from 20KHz to 20MHz.

EPL diode lasers provide a cost-effective and reliable alternative to nanosecond flashlamps and expensive mode locked Titanium Sapphire femtosecond lasers. The new EPL 515 brings an additional wavelength into the range, allowing more fluorescent dyes to be excited and further extending the range of applications, which include fluorescence lifetime measurements that use TCSPC as the measurement technique.

Typical instrumentation in which the EPL 515 may be used are fluorescence lifetime spectrometers and fluorescence lifetime multiwell plate readers for spectroscopy applications in biochemistry, biology, photophysics, semiconductor physics, bio-chemical assays etc. Customised versions of the diode laser can be also supplied for integration within various types of analytical instrumentation.

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Explore the essential role of optical filters in enhancing Raman spectroscopy measurements including the various filter types and their applications in improving signal-to-noise...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!